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DERIVATIVE SUPERCONVERGENT POINTS 
IN FINITE ELEMENT SOLUTIONS OF POISSON'S EQUATION 

FOR THE SERENDIPITY AND INTERMEDIATE FAMILIES 
- A THEORETICAL JUSTIFICATION 

ZHIMIN ZHANG 

ABSTRACT. Finite element derivative superconvergent points for the Poisson 
equation under local rectangular mesh (in the two dimensional case) and local 
brick mesh (in the three dimensional situation) are investigated. All super- 
convergent points for the finite element space of any order that is contained 
in the tensor-product space and contains the intermediate family can be pre- 
dicted. In case of the serendipity family, the results are given for finite element 
spaces of order below 7. Any finite element space that contains the complete 
polynomial space will have at least all superconvergent points of the related 
serendipity family. 

1. INTRODUCTION 

In the development of the finite element method, researchers have observed that 
for certain classes of problems, the rate of convergence of the values of the finite 
element solution and/or its derivatives at some special points exceeds the possi- 
ble global rate. This phenomenon has been termed "superconvergence" and has 
been analyzed mathematically because of its practical importance in finite element 
computations. For the literature, the reader is referred to [7]. Regarding the finite 
element superconvergent points for the Poisson equation, a result can be found from 
the early 70's in [3], where the authors proved that element knots are superconver- 
gent points when the tensor product C0 elements are used. 

The term superconvergence also includes accelerated convergence achieved by 
means of various recovery (or post-processing) techniques. 

Our consideration in this study is the natural derivative superconvergent points 
when no post-processing is applied. Note that Douglas et al. [3] considered solution 
superconvergence, not derivative superconvergence. 

In the one dimensional setting, it has been known since the late 70's that the 
Gaussian points, i.e., zeros of Legendre polynomials, are derivative superconvergent 
points when using Co elements to solve two-point boundary value problems [2]. 
But, in the higher dimensional setting, the situation is more complicated in that 
the superconvergent points are very sensitive to the properties of the solutions, the 
finite element space, and the geometric pattern of the meshes [1]. 
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In this paper, we shall study the derivative superconvergent points for the Pois- 
son equation under local rectangular meshes in both two and three dimensional 
settings. There are three popular polynomial bases for two dimensional rectan- 
gular meshes in engineering practice: (1) Tensor-product spaces; (2) Serendipity 
families; (3) Intermediate elements. It is well known that for a large class of prob- 
lems, superconvergent points for the tensor product space lie along Gaussian lines. 
Superconvergent points for intermediate and serendipity families were reported only 
recently. 

Recently, there were two important works in the field: A purely theoretical in- 
vestigation by Schatz, Sloan, and Wahlbin [7] and a "computer-based" proof by 
Babuska, Strouboulis et al. [1]. The authors of [5] showed for the scalar second- 
order elliptic problem that if the finite element space is locally symmetric about a 
point xo with respect to the antipodal map x > xo - (x - xo), then derivative su- 
perconvergence occurs at xo when the finite element space is piecewise polynomial 
of odd degree under mild conditions on the behavior of the solution outside a neigh- 
borhood of xo. The approach in [1] is quite different. The authors claimed that the 
existence of superconvergent points can be guaranteed within a given tolerance by 
a numerical algorithm. With this approach, they found, with the aid of the com- 
puter, all superconvergent points for the Laplace equation, the Poisson equation, 
and the linear elasticity equation, on four mesh patterns of triangular elements and 
the above three families of rectangular elements of degree n, 1 < n < 7. The main 
assumptions in [1] are: (a) there is no roundoff error; (b) the meshes are locally 
translation-invariant; (c) the solution is sufficiently smooth locally. The main idea 
is to majorize the finite element solution error by a polynomial of one degree higher 
than the finite element space being used. Therefore, the search for superconvergent 
points is transferred to a search for intersections of some polynomial contours. At 
this moment, the computer is used to actually locate those intersections. 

In the present work, we shall analytically find those intersections which represent 
superconvergent points for the Poisson equation under local rectangular meshes, 
and thereby provide a theoretical justification for superconvergence results, in this 
case, for the computer-based proof. Furthermore, the analytic approach is capable 
of predicting some parallel results for many other rectangular elements and brick 
elements (three dimensional rectangular elements) which have not been reported 
in the literature. Another advantage of this investigation is the elimination of 
Assumption (a) in the computer-based proof. 

2. PRELIMINARIES 

We shall outline the approach by Babuska et al. [1] in finding superconvergent 
points via a computer-based proof. Here we follow the description provided by 
Wahlbin [7] (Chapter 12). 

Consider the local superconvergent points of the finite element solution Uh to the 
solution of the Poisson equation u on a master cell c(xo, h) = {y: ly-xo0 < h}. Here 

denote the LOO-norm of vectors. Assume that the 2h-periodic extension of the 
master cell fits two squares Q1 = {y: Iy-xo I < 2H} and Qo = {y: Iy-xo I < 4H} 
exactly, where H = h8 with 0 < 6 < 1. As the finite element solution of the Poisson 
equation, ULth satisfies 

V(u - Uh)VV = 0, Vv E ShrP(Qo), 
Q0 
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where S"'mP(Q0) is the finite element subspace which has compact support on QO. 
The basic assumption is 

(2.1) 11X - Uh lL(Qo) < Chn?1L, 

with L+6 <1. 

Remark 2.1. Assumption (2.1) implies that various pollution effects from outside 
of Qo have been properly treated and the error loss is of order hL. 

Let Q be the (n + 1)th order Taylor-expansion of u at xo. Then 

(2.2) -QW+(Qo) < CHn+1 -1 < s < n. 

Denote by Ih the standard interpolation operator into Sh(Qo), and let p = Q-IhQ. 

The key observation in [1] is that p is 2h-periodic. Let SK(c(xo0 h)) be 2h-periodic 
functions in Sh(C(X0, h)), and define PP(p) by 

i(xO,h - PP(p)) 0o, j V(p - PP(p))Vv = 0, Vv E S (c(xo h)). 
c(x?O,h) c(x?O,h) 

PP(p) is also used to represent its 2h-periodic extension. Now let / = p - PP(p), 
and we have (cf., [1], [7]): 

Theorem 2.1. 

a 
( - th)() = (x) + Ri(x), x E Qo, i = 1,2, 

with 

IIR- 1L.(Q1) 
< C(h n+ + hn+-L-6). 

Remark 2.2. Theorem 2.1 is our starting point. It states that the finite element 

approximation error in the derivatives can be majorized by ,0 since the remainder 
axi 

Ri is of order min(6, 1 - L - 6) higher than the global optimal rate. Therefore, 

derivative superconvergent points are those points where ,+ (x) = 0. Thus, the 
axi 

task of finding superconvergent points is narrowed down to the task of identifying, 
on the master cell, the critical points of some 2h-periodic piecewise monomials of 
degree n + 1 not in the local finite element space Sh(C(X 0 h)). This is equivalent 
to finding the critical points of some g6, periodic monomials of degree n + 1 on the 
reference element K= [-1, 1]2 satisfying V/, Vn(K), and 

JVgVv = 0, Vv E Vn(K), 

where Vn(K) is the image of Sh(c(x0 h)) under the change of variables x1 = xo +h, 
x2 = Xo?+hr?. In [1], the job of locating critical points of some periodic polynomials is 

done by the computer, so it is called "computer-based proof'. In,the present study, 
we shall find them analytically by characterizing the space of periodic polynomials. 

Remark 2.3. Theorem 2.1 can be generalized to the three dimensional setting (cf., 
[1]). 
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3. CHARACTERISTIC OF PERIODIC POLYNOMIALS 

We shall characterize the space of periodic polynomials of degree not greater 
than n on K= [-1, 1]2, denoted as PPn(K). 

Define P(K), the set of periodic functions on K, i.e., f (E, 1) = f (E, -1), f (1, r1) 
f (-1, r) for f E P(K). Let Pn(K) denote the space of polynomials of degree not 
greater than n on K. Then 

PPn (K) = Pn(K) n P(K). 

Observe that for any polynomial p of a single variable, 

P(K) n Span{p(()7, (p(77)j} {O}. 

Therefore, 

PPn (K) Sn (K) n P(K), 

where 

Sn (K) = Pn (K) U Span{hnr 5,7n }. 

Note that Sn (K) is the serendipity family which contains 4 nodal shape functions, 
4(n - 1) side modes, and (n - 3)(n - 2)/2 internal modes (cf., Section 6.1 in [6]). 

Dimension of PPn (K) can be decided by deleting from S, (K): (a) 3 nodal 
freedoms (one node decides the other three by periodicity) and, (b) 2(n - 1) side 
modes (two sides decide the remaining two by periodicity), since all internal modes 
of Sn (K) are automatically periodic. Hence, 

dimPPn(K) dimSn(K) - 2(n - 1) - 3 

= (+?1)(n+2) +3 (n i-1)in2 n>2 
- 2 ?~+2 - 2(n -1) 2 2 n>2 

Letting Pk denote the Legendre polynomial of degree k (> 0), we define 

q$k+1(() jPk(t)dtj k > 1, 

(3.1) 

Tn (K) = Span{ 1,k )(()v i k(07), k = 2, 3, . , n; i(E,)Oj (r1), i + j < n, i, j > 21. 

Using the recurrence relation (page 47 in [4]), 

pk+l1(t) -pl 1(t) = (2k +1)pk(t), k > 1, 
we see that, 

(3.2) 0k+1(() 2k?1(Pk+(1) -Pk-1(()), k > 1 

Theorem 3.1. 

PPn (K) = Tn (K). 

Proof. Obviously Tn(K) C Pn(K). Observe that qj(-1) = - (1) 0 (j > 2). 
Hence Tn (K) c P(K) and therefore Tn (K) C Pn (K) n P(K) = PPn (K). Notice 
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that all polynomials in (3.1) are linearly independent. Therefore, in order to prove 

Tn (K) = PPn (K), we only need to show that dim Tn (K) = dim PPn (K). Indeed, 

dimT,(K) = 1+ 2(n-1) + 1 + 2 + ? + n?-3 

= (-2)2 + 2 dimPPn(K). D 

Theorem 3.1 characterizes the space of periodic polynomials (on K). Further, 
we consider the orthogonal decomposition of PPn(K) under the Laplace operator. 
Towards this end, we define 

n(K) = {fu E PPn(K)l Jvuvv = Vv c PPn_j(K)} 

Then by the Gram-Schmidt process, we can decompose PPn(K) into 

PPn(K) = PPo(K) e '2(K) eD 'n-l1 (K) ED 'n(K). 

Note that PPo(K) = Span{1} and TI'1(K) = {0}. 

4. DERIVATIVE SUPERCONVERGENT POINTS FOR RECTANGULAR ELEMENTS 

Suppose that the finite element local space Vn(K) contains Pn(K), then accord- 
ing to Theorem 2.1 and Remark 2.2, the set of derivative superconvergent points 
can be characterized as 

SPn(() = { (4i 71) E KI ((v 7) = OV/ e Tn+I1(K) \ Vn7(K)}; 

SPn(1=) = {(~,r7) E K= I -(~7) O E En+1(K) \ Vn(K)}. 

Clearly, SPn (() is the set of superconvergent points for derivatives in the (-direction 
and SPn (r) is the set of superconvergent points for derivatives in the r1-direction. 

Case 1. Pn+1(K) \ {n,r+l ?1} C Vn(K) C Qn(K), where Qn(K) is the space of 
polynomials of degree not greater than n in each variable on K. This includes the 
intermediate family, tensor-product elements and all possible choices in between. 

Tn+ 1 (K) \ Vn (K) = Spaiif On+ 1 ((), i n+ 1 (71) } 

Therefore 

SPn( ) = { (En rT) ( KI () PnE,) O} {(G() vt), i =1 ... n}; 

SPn (t7) = { (6, rT) E K 1 + (Ti) = Pn (T7) =} ={(, ) 1 .. . I n}. 

Here G0n) are zeros of the Legendre polynomial Pn, i.e., the Gaussian points of 
degree n. 

Case 2. Vn(K) = Sn(K), the serendipity family. This is a more interesting 
and also more complicated case where Pn+l(K) n Vn(K) {0} and hence 
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4rn+?i (K) \ Vn (K) = in+ (K). The set of derivative superconvergent points are 

SPn(T)= {() T) E K -((bTl)=O VOETn+1(K)}; 

SPn (r1) = { (( r1) E KI ((,r1) 0 VO 'En+1(K)}. 

Therefore, we need to construct In+1 (K) explicitly by the Gram-Schmidt process. 
Toward this end, we introduce: 

Theorem 4.1. For k>4, 2<i<k-1, and2<j<k-2, 

(4.1) JV[0i(()qk+1-i(r1)] * V[0j(()qk-j(?7)]d?d7 0. 

Fork-1 > I > 4, 2 < i < k-1, and2 < j < l-2, 

(4.2) J^V [0i (() k+1-i (TI) * [Oj (()0j_j (?)]<d?7 d= . 

Fork > 5, 2 < i < k-1, and2 < j < k-3, 

(4-3) (V [0i (()Ok+1_i (71) * V [0j (()k-1-j (?)]<d?d7 

(2i-1)(2i-5) IPi-211 I2Pk-i 2 i = j + 2, 
- 

(2k-2i+1)(2k-2i-3) 1Pi-_1 2 IPk-1-i i = j, 
O otherwise. 

Proof. We shall utilize the fact that /' = Pi-1 and the orthogonal properties 
(Pi,Pj) = 0 if i 78 j, (0i,/j) = 0 if i > j + 2, and (0i,$i-1) 0 (see (3.2)). 
We have 

(1) When k > 4, 2 < i < k-1, 2 < j < k-2, 

V[0i (()Ok+1-i (TI) * V[0j(()Ok _j (Tj)]dfd 

=(Pi-1,Pj-1)(Qk+1-iH k-j) + (bi,ibj)(Pk-i,Pk-j-1) 0, 

since for i - j + 1, 

(pi-l,pj-1) = 0 = (Oi, qj), 

for i = j, 

(Ok+1-i, kk-j) = - = (Pk-i,Pk-j-1), 

and for i < j, 

(pi-1,Pj-1) = 0 = (Pk-i,Pk-j-1). 

(2) When k-1 > 4, 2 < i < k-1, and 2 < j < l-2, 

V[0i (()Ok+1-i (TI) * V[Oj (()0j_-j (T)]<dfd 
K 

- (Pi-1,Pj-1)(k+?1-i, 01-j) + (ii ,j)(Pk-i ,P1-j-1) -0, 

since for i > j + 2, 

(pi-l,pj-1) = (q$j, (lj), 
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for i = j + 1,j + 2, i < j, 

(Pi-liPj-1) = 0 = (Pk-i,PI-j-1), 

and for i j, 

(Ok+l-i, 01-j) = 0 = (Pk-i,PI-j-1)- 

(3) When k > 5, 2 < i < k-1, and 2 < j < k-3, 

J V[q$i(()q$k?l-(r)] *V[q$()0--jn]dd 

=(Pi-1,Pj-1);(0k+1-i, Ok-1-j) + (Oi, Oj)(Pk-i,Pk-j-2)- 

(a) If i j + 1 or i > j + 2, 

(Pi-l,Pj-i) 0 = (Oil, j). 

(b) If i < j, 

(Pi-1,Pj-1) 0 (Pk-i,Pk-2-j)- 

(c) If i = j + 2, (pi-i,pj-i) = 0 and 

(Oi0j(P-iik--2 
- 1 

lPi-2 2lP 
*2 

(Xi, P j ) (pk-i, pk-j-2) (2i - 1) (2i - 5) 

(d) If i = j, (Pk-i,Pk-j-2) = 0 and 

(pi-1,Pj-1)(0k+1-ii, k-1-j) - (2k-2i 1)(2-2i-3)k--i 

Here we have used the formula (3.2). The assertion follows by combining (a)- 
(d) . 

Theorem 4.1 reveals the orthogonal properties (under the Laplace operator) 
among the interior basis functions of PP, (K). (4.1) indicates that all interior 
basis functions of degrees k + 1 are orthogonal to those of degrees k (> 4), (4.2) 
implies that all interior basis functions of degrees k + 1 (> 5) are orthogonal to 
those of degrees less than k - 2, and (4.3) says that any interior basis function of 
degree k + 1 is not orthogonal to at most two interior basis functions of degrees 
k -1 (> 4). These properties will dramatically simplify the Gram-Schmidt process 
in constructing In+'(K). 

The following is a list of TIn+I (K) for n = 1, 2, 3, 4, 5, 6. Note that for n < 2, the 
serendipity family Sn(K) is the same as the intermediate family. 

'I2 (K) = Span{02 ( 0),$2 (7) }; 

'3 (K) = Span{$3 ( 0),$3 (r1)}; 

I4(K) = Span{q$4( ),P2(()P2(rI), 044(n7)}; 

T 5 (K) = Span{ 05 ((,03 (()P2 (TI), P2 (() 03 (TI), 05 (TI) }; 

'6 (K) = Span{ 06((), (P4 ( a)- P2 (())P2 (r), 03 (() 03 (n), 

P2(() (P4(?7) - aP2(?7)), 066(n7)}; 

T7(K) = Span{07((), (050(0)-/3(())P2(?7), (P4() -YP2 03(n), 
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Here 

a =(P4P'2) (05 03)1jP-2 11_ (P4,P2)'103 I2 
2t = 2lp' 112 ' I211 4 + 1103 112 lP'2 112 ' I2 114 + 113112IIP'2 112' I P2? '13 2 P2? 1103 p2 

In order to simplify the notation, we denote 

{ f ((, 77) = 0} = { ((, 7) EE KI f ((, 77) = O}. 

Then, we have 

Sp, (0 = 012 (0 = ?} = {P1 (0 = O} = { (0, T)}; 

SP2 () = {q3() = 0} = {P2 () = 0} = {(? ,)}; 
V3 

SP3(Q) = {fo ) = o} n {P'()P2(?7) =} ={p(P3() =0O} n {f o,P2(7) = 

= { 0? I}n } = o,7? = I} = {(0, ), (? - ? )}; 

SP4(Q) = {qoo) n0O} 0 {(4)P()2(r=) =O} n {P()q03$(r) 0} 
- {P4Q() o} n {P2 () O, o'(rI) =} 0 {p2() 0, 03(7) = 0} 

={P4( =o}{ n 3(?7) = o} n0{3(n) = 0} = 0; 

since {P4 () =} 0 {P2) 0} = 0, and {P4 () O} n {p2) =} 0. 

SP5(() - {o'q) - ?} n {(p4) - P'())P2(r1) - ?} 
n {q()033(r=) 0O} n {P( )(P4(r1) - aP2(71)) = 0} 

={P5(0)}= O{ n = 0,P2(?7) = O} n0{3(n) =0} 
n {f - O,P4(?7) - aP2(77) = 0} 

= P5(()= =oln f(=o nfO3 (l)= =oln f=ol 
= - =0o} n {f3(r) - 0} = {(O O), (O ?1)}; 

since 

{P5(() =} 0 {p4(() - ap2(() = ?} = f( = ?}, 
fP5 (()= O} n{P2 (() = O} = 0, 
{ 033(?) =O}{ nP2( 1) = 0} = 0, 

{q03(?7) =} 0 {P4(?7) - aP2(?7) = 0} = 0. 

SP6(() C {q7() =} 0 
{(n5(o 

) - 030(())P2(r) = 0} 
n {$3 ()(P4(r7) - P2(?7)) 0} 

= {P6(() = 0} 0 {nP4() - O3P2(() =,P2 (T) = 0} 
n {P2(() = O,P4(TI) - -YP2(?7) = 0} 

= {P6 () O}{ nP2(?7) O}{ nP4(?7) - YP2(rI) = 0} 0; 
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since 

{P6(4) = O} n {4() - !P2(&) =O} 0, 
{P6() = O}{ nfP2(,) = O} = 0 

The superconvergent points for the other derivative can be obtained similarly. Sum- 
ming up, we conclude that: 

1. For any finite element space contained in the tensor-product space that con- 
tains the intermediate family, all superconvergent points for Poisson's equation 
under the rectangular mesh are along Gaussian lines. 

2. For the serendipity family of order n= 3, the superconvergent points (in the 

reference element) are along the central line 0 and at four points (? - ? -) 
5' 3 

for -; and along the central line 7 = 0 and at four points (? -? ) for 
O9x 3' 5 O9y 

For the serendipity family of order n = 4,6 (and likely any even order n > 4), 
there is no superconvergent point. 

For the serendipity family of order n = 5 (and likely any odd order n > 5), there 
are three superconvergent points: the element center and mid-points of two parallel 
edges. 

3. Any finite element space that contains Pn(K) will have at least all supercon- 
vergent points of the serendipity family. 

Remark 4.1. All results in the computer-based proof of [1] for Poisson's equation 
under the rectangular mesh are justified. But, the results here are more general in 
the sense that they include all possible choices for the finite element space between 
the intermediate family and the tensor-product space and all possible finite element 
spaces that contain Pn(K), the complete polynomial space of degree n. 

Remark 4.2. For the serendipity family, the most interesting case is n = 3, in 
which we have theoretically justified the computer-based discovery in [1]. For odd 
n > 5, all three superconvergent points have been predicted theoretically in [5]. 
The contribution here is to verify that they are the only superconvergent points. 

Remark 4.3. The superconvergence results in this work are restricted to the Pois- 
son equation while the "symmetry" theory is for more general second-order ellip- 
tic equations. However, it is possible to extend the findings here to some other 
equations. This belief is encouraged by the following fact: While original super- 
convergent points in [3] were restricted to the Poisson equation, the result has been 
generalized to the equation (see [7], Chapter 6) 

n 
-V(a(x)VU) - a3 (ai (x)u) + a(x)u= f. 

5. DERIVATIVE SUPERCONVERGENT POINTS FOR BRICK ELEMENTS 

In this section, superconvergent points for the three dimensionaliPoisson equation 
under local brick elements will be investigated. This development is based on the 
observation in Remark 2.3, therefore a parallel result of Theorem 2.1 in 3-D is our 
starting point here. The discussion will be brief. Now the reference element is 
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K = [-1, 1]3, and 

(5.1) 

PP, (K) = Span{1,k ((), qk (r), k((), k =2, 3,. n ,n;qi (()qj ((), qi (7)q$j((), 

Oi(()Oj (()j i + j < n, i, j > 2;i Oi()j (77) k( i + j + k < n, i, j, k > 21. 

Case 1. P +1(K) \ f + C Vn(K) C Qn(K). This includes the 
three dimensional intermediate family and tensor-product elements and all pos- 
sible choices in between. 

In+l(K) \ Vn(K) = Span{q$n+1((), ?)n+1(r7), $n+?1(()}. 

Therefore 

SPn(() {(1 e(KI &>?1(()=pn(() =O} -{(Gt~ ),1,) i=1,... ,n}; 

SPn(r1) = {( ( ) ;e Ki (r- ) = Pn(Tl) O} - {(G IT,) 
i 1, ... n. ; 

SPn (77) = { 
(6, 7 1, <; K | Ci){<; (/<;) = Pn ((; }={(v71 () )1 f i~ =G1* n}; 

Hence derivative superconvergent points are on the Gaussian planes. 

Case 2. Vn(K) is the 3-D serendipity family. Now we have, 

SPn (( {((j TI, E)E KI 096 ( ( ()l = VOEWE Tn+l (Kf); 

SPn (1) (( 1, T, EE K I f( () b = O VO ETn+1l(K)j}; 

SPn(() = {(( 71,( EE KI 09,. ( o(=,m) OV e 'n+1(K)}; 

Here 

T2 (K) = Spalif 02() 02(T1) I 0/2((} 

'F3 (K) = Spaln{03 (0), 03 (TI), 03 )}; 

T4 (K) = Spalif 04 (() , 04 (T1) I 04( P2 (()P2 (I) , P2 (T)P2 (0, P2 (()P2 1); 

'I 5 (K) = Span{05 (i), 05 (ri), 05 (0), 03(()P2 (?),P2 (03 (r), 

03 (7)P2 ((), P2 (I)03()03 (()P2( )P2 (03((} 

T6 (K) = Span{ 06 ((), 06 (I) I 06 () 

(P4 () - aP2(())P2(1) , 03(()03 (n)P2 (P4( - aP2(l)), 

(P4(TI) - aP2(r1))P2( ) 03(,)03 P2(n)(P4, -aP2 

(P4(() - aP2 (())P2(),03 (() 03 P2( - aP2P))} 
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Therefore, 

SP1(0) = {Pi(@0 = 0} = {(0) ()}; 

SP2(() = {P2(&) = 0} = {(? 1,)}; 
V3 

SP3(0) = 0P3(()= O} n {f O,P2(T) = O} n {f = O,P2(() = 0} 

={(0, , ), (?id, ? ? )}; 

SP4(0') =N(()= O} n {P2() = O,P2(l) = O} n {f = 0, 03(n) = 0} 

n{P2(0) = O,P2(()= ?} n { =} = 0,3() = 0} = 0; 

SP5(0=) {P5(0= O} n {(p4(() - ap' (()) = O,P2(rl) = 0} 

n {P2 () 0, 03(n) = O} n {f = 0, (P4(rI) - aP2(?7)) = 0} 
o {(p() - ap,()) = O,P2(() =} 0 {P2(0) = 0, 03() = 0} 

n {f = 0, (P4(() - aP2()) = 0} 

= {(0, 0,0), (0, ?1,0), (0,0, ?1), (0, ?1, ?1)}. 

Superconvergent points for the other two partial derivatives can be obtained simi- 
larly. In summary, we have shown: 

1. For any finite element space contained in the tensor-product space that con- 
tains the intermediate family, all superconvergent points for Poisson's equation 
under the brick mesh are on Gaussian planes. 

2. For the serendipity family of order n= 3, the superconvergent points (in the 
reference element) are on the central plane 0 = 0 and at eight points 

3 1 
1)d) 5' 3' 3 

for . Similar results hold for the other two partial derivatives. 
Ox 

For the serendipity family of order n = 4 (and likely any even order n > 4), 
there is no superconvergent point. 

For the serendipity family of order n = 5 (and likely any odd order n > 5), there 
are- nine superconvergent points: element center, mid-points of four parallel edges 
and centers of four associated faces. Note that the element center is shared by all 
three partial derivatives, and each face center is shared by two partial derivatives. 

Any finite element space that contains Pn(K) will have at least all superconver- 
gent points of the serendipity family. 

ACKNOWLEDGMENTS 

The author would like to thank Professor Lars B. Wahlbin for his encouragement 
and helpful discussions on the present work. The author would also like to thank 
the referee for some valuable suggestions. 

REFERENCES 

1. I. Babuska, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj, Computer-based proof of the 
existence of superconvergence points in the finite element method; superconvergence of the 
derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, 
Numerical Methods for Partial Differential Equations 12 (1996), 347-392. MR 97c:65160 



552 ZHIMTN ZHANG 

2. C.-M. Chen, Superconvergent points of Galerkin's method for two-point boundary value prob- 
lems (in Chinese), Numer. Math. J. Chinese Univ. 1 (1979), 73-79. 

3. J. Douglas, Jr., T. Dupont, and M.F. Wheeler, An LI estimate and a superconvergence result 
for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, 
RAIRO 8 (1974), 61-66. MR 50:11812 

4. N.N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972. MR 
50:2568 

5. A.H. Schatz, I.H. Sloan, and L.B. Wahlbin, Superconvergence in finite element methods and 
meshes which are symmetric with respect to a point, SIAM Journal on Numerical Analysis 
33(2) (1996), 505-521. CMP 96:12 

6. B. Szab6 and I. Babuska, Finite Element Analysis, John Wiley & Sons, New York, 1991. MR 
93f:73001 

7. L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Math- 
ematics, Vol. 1605, Springer, Berlin, 1995. CMP 97:09 

DEPARTMENT OF MATHEMATICS, TEXAS TECH UNIVERSITY, LUBBOCK, TEXAS 79409 
E-mail address: zhangIttmath. ttu. edu 


